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Abstract

A simulation procedure is described in this paper for investigating the deformation control in advanced plate and
shell structures which have the so-called adaptive capabilities using smart materials. The procedure is an iterative one
which involves sensing and actuating processes. The former measures structural responses and determines how the
actuators act whilst the latter realizes the actuation and dictates the new structural deformation state. The structural
modelling used in the procedure is completely based on the classical plate and shell theory, and the constitutive rela-
tionship involved has a general type for laminated composites which integrates the structural and smart materials and
facilitates that smart materials can be embedded in or bonded on the structure. A co-located sensing and actuating
scheme based on strain measurement is employed. This procedure is tested with an example of thermal deformation
control for a plate first and then applied to the compensation for thermal deformation of a paraboloid shell of revo-
lution which models an antenna. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

The new interdisciplinary study of smart materials and structures emerged about a decade and half years
ago. It was first an outcome of a desire for high-performance aircraft structures with smart skins and large
flexible space structures with integrated actuators to control their deformations and suppress their vibra-
tions. Then it has widely penetrated into other engineering branches, like automotive engineering, civil
engineering, maritime engineering and bio-mechanical engineering. Increasingly more and more technical
books and journal papers are discussing this topic and has resulted in even more researchers getting in-
volved in it. Gandhi and Thompson (1992) talked generally about the smart materials and structures and
especially their future perspectives; Banks et al. (1996) and Preumont (1997) focused on the vibration
control of structures integrated with piezoelectric actuators; Culshaw (1996) introduced more about the
optical sensing besides other electrostrictive and magnetostrictive sensors and actuators. In the simulation
analysis of smart structures, two methodologies have been used in modelling establishment. The first
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methodology separates the smart materials or actuators from the structures and uses conventional struc-
tural elements, like the bar and beam elements, to model the structures alone and add the mass, damping
and stiffness properties of the smart materials or actuators on the structural models directly. This meth-
odology has been used in vibration suppression for large flexible space truss structures and seismic space
frame structures (see e.g. Adeli and Saleh (1998) and the references therein). The second methodology
integrates smart materials and structural materials into the finite element modelling. Therefore, the ele-
ments constructed in this way will have variable material properties which will result in the variable
damping and stiffness properties for the elements. Plate-type of such elements has been investigated by
numerous researchers (see e.g. Crawly and his co-workers (1987, 1991), Ha et al. (1992), Lin and his
co-workers (1993, 1996), Chandrashekhara and Agarwal (1993), Chattopadhyay and Seeley (1997)) and
applied to the deformation control and vibration suppression for plates. Other general topics in smart
materials and structures can be found in a more complete bibliography survey given by Mackerle (1998).

This paper proposes a procedure to construct an element for a shell of revolution in which smart ma-
terials may be present. The smart materials are assumed to be layered type which can be bonded on or
embedded in a shell structure to provide sensing and induced strain actuating functions. The overall ma-
terial properties of a shell structure are modelled as that of general laminated composites. Therefore, the
stress and moment resultants corresponding to the thermal strain and the induced actuation strain of the
smart materials can be obtained straightforwardly using the constitutive relationship for general laminated
composites. Fig. 1 shows a typical lay-up of the laminated composites of interest with layered smart
materials.

Under the assumption that a shell structure of interest is thin, the classical shell theory is used to describe
its deformation. Rayleigh—Ritz approach is then employed to deduce the element stiffness matrix and nodal
force vector of which the latter may contain the actuation from the smart materials. The structural strain
responses, which are readily measurable in real implementation, are calculated in the present simulation
analysis and taken as the sensing quantities. A control algorithm based on a co-located sensing and ac-
tuating scheme is adopted in which the action of an actuator depends only on the sensing measurement of a
sensor located in the same place. To test the procedure, the controlled deflections of a composite beam for
which an analytical solution exists and a cantilevered laminated composite plate with distributed G-1195
piezoelectric ceramics bonded on the surfaces of the plate for which experimental results are available from
Crawly and de Luis (1987) and an actuator composite plate exposed to elevated environment for which a
finite element simulation was carried out by Ha et al. (1992) are investigated. Then, this procedure is

Bonded-on smart
material

Structural
moterial

,//’ Embedded-in smart
7 material

Z
777 LIS S

I e e A
7 /4

4Ty,

z

Fig. 1. A typical lay-up of laminated composites with layered smart materials.
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applied to analyze the shape control problem of a thermally deformed paraboloid shell of revolution
(modelling an antenna) and generate numerical simulations about its deformation control using different
control schemes with respect to various thermal environments to which it is exposed.

2. Governing equations of the thermal deformation control problems using induced strain actuation

Finite element method is used in this paper to simulate the thermal deformation control process for
plates and shells with distributed structural actuation. Therefore, the governing equations are established
with the use of energy variational principles. Rayleigh—Ritz approach based on the minimum strain po-
tential energy is employed here. So, to obtain the governing equation, the expression for the strain potential
energy is needed first. In the particular problem discussed in this paper, it has the following rather simple
form,

UZE/VO'T(E—ST—SA)dV, (1)

where & — e — &4 is the elastic strain in which ¢ is the total strain which relates to structural displacement
field, et the thermal strain and &4 the induced actuation strain. In Eq. (1), ¢ is the stress state which depends
on the elastic strain through the constitutive relationship of materials, i.e.

g =C(e—er —ep), (2)

where C is material modulus matrix.
For plate and shell structures, the strain potential energy can also be expressed in terms of membrane
strains and bending curvatures after the through thickness integration has been carried out in Eq. (1), e.g.

1
=3 / ¢"(Le — 2FT — 2FY) dQ + U, 3)
Q

where U is a constant strain potential energy term due to the thermal and induced actuation strains, Q is
structural mid-surface area, vector e consists of membrane strains and bending curvatures which relates to
stress resultants through matrix L, F(T and F®) which are stress resultants from the thermal and induced
actuation strains, respectively. Their detailed forms will be given in later sections based on their counter-
parts in each element.

In finite element approach, the displacement field is interpolated from those at element nodes by shape
functions. Therefore, membrane strains and bending curvatures can finally be expressed with those dis-
placement values according to the specific kinematics adopted in the classical plate and shell theory used
here, i.e.

e =®D, 4)

where D is the unknown displacement vector which is composed of those at element nodes whilst @ is the
so-called strain matrix.

Substituting Eq. (4) into Eq. (3) and applying variations on the result, we obtain the governing equations
in weak form,

SU = SDT([ / chchdQ}D— / ®'F1dQ - / OTFW dQ) =0, (5)
Q Q Q
ie.

KD — {1 — t® =0, (6)
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where K = [, ®'L®dQ is the structural stiffness matrix, " = [, ®'F"dQ and f* = [, ®'F* dQ are
equivalent nodal forces corresponding to thermal and induced actuation strains, respectively. It is well
known that in the real implementation of finite element approach, the variational principles are used at
element level, and structural stiffness matrix and nodal force vectors are assembled from those of elements
in a standard way. So, in the following sections, we concentrate on element construction.

3. Displacement representation of an element as a piece of shell of revolution
3.1. Geometry description of an element

Fig. 2 shows a basic element of a shell of revolution which may, in general, be a laminate (Fig. 1) having
arbitrary lay-up of a number of layers of fibre-reinforced composite or smart material. In the element, the
natural co-ordinates are used. For a shell of revolution, this natural co-ordinate system is orthogonal and
happens to be the lines of curvature.

Under the assumption that the shells are thin, the classical thin shell theory (TST) is employed which
uses three displacement-type quantities indicated in Fig. 2, namely u, v and w, the translational displace-
ments at the middle surface in the s, f and z directions, respectively, to characterize the shell behaviour. In
the present approach, the physical displacements are only specified at some locations on the several so-
called reference meridians (four reference meridians are shown in Fig. 1). The displacements elsewhere in an
element are interpolated from them. On the reference meridians, the spline interpolation is used which
facilitates the required displacement continuity along the meridians to be maintained and the kinematic
boundary condition at two ends of the shells to be satisfied. Between the reference meridians, the poly-
nomial interpolation is used which observes the condition that no additional physical displacements are
needed other than those specified on the reference meridians.

Meridians

Fig. 2. An element.
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3.2. Displacement representation along a meridian

Let b,,,(s) be a basis spline function of degree m defined on a reference meridian with a knot sequence
{s,}. It can be proved that the basis spline function is unique and can be expressed as a linear combination
of the so-called truncated power functions (see e.g. Schempp (1982)), i.e.

bm:n(s) = Z ak,n(s - Sn+k)ﬁ’ (7)

0<hk<m+1

where (s —5,.4), = sup(s — 8,44, 0). To satisfy the continuity, finite support and normal conditions of a

basis spline function, the real coefficients a, (k=0,1,2,...,m+ 1) are determined by the following
equations:
Y s —s)" =0 (I=n+1..ntm+l), (8)
0<k<m+1
m+1
Z ak,n(Sn+m+1 — Sn+k) =m-+ 1 (9)
0<k<m+l1

Let f (s, ¢) be a continuous displacement function, for example it may be u(s, ¢), v(s, ¢) or w(s, ). When ¢ is
constrained on the ith reference meridian, i.e. ¢ = #;(s), f (s, #(s)) becomes a continuous function on it. So,
f(s,t;(s)) can be approximated by the spline interpolation as follows:

F(5,65)) = 3 abruas), (10)

where o, (n=1,2,...,N,) are interpolation coefficients which should be determined by the specified
conditions of f(s,#(s)) on the reference meridian, and N; is the total number of basis splines used for the
meridian. The specified conditions of f(s, #(s)) are chosen to be

fi = [f(Slati(sl))vf<1)(slati(sl))v s ,f(ml)(sl,Z‘,-(Sl)),f(SQ,li(Sz)),f(S3,ti(S3)), cee a.f(SNx—lmti(SNs—m))v

f(l)(SNrma ti(sNrm))v cee 7f(my>(sN.\-fmv ti(SN.\-fm))}Tv (1 1)

where m; =m/2 —mod(m,2), m,=m—m; —1, and fO(s;,t:(s;)) (k=0,1,2,...,m;) and f®(sy_,,
ti(sy—m)) (k=0,1,2,...,m,) are values of the displacement function and its derivatives at two ends of a
shell element where the kinematic boundary conditions may be enforced.

Substituting these specified conditions in Eq. (11), the obtained o = [0y, 012, . . ., ocn]T are

o = R_lf,-, (12)

where the elements of R are
Buis)) (I=n+1; n=0,1,....m; k=1,2...,N),
Ry =X busi(s,) (I=n+m;n=273,... N—m; k=12,...,N,), (13)
bf,ﬁ(szvx—mﬂ) (I=n+N;,—m; n=0,1,....m; k=12... N,).
Combining Egs. (10) and (12), the spline interpolation of f (s, #;(s)) with its specified values is
f(s,t:(s)) = B ()1, (14)
where

B,.(5) = [bn1(5), bm2(8), - - bun, ()R (15)



2898 D. Tan | International Journal of Solids and Structures 38 (2001) 2893-2919

3.3. Displacement representation in the circumferential direction

When s is fixed, f(s,¢) becomes a continuous function in the circumferential z-direction whose values are
restricted to f(s,#(s)) on its junctions with the reference meridians. As in classical TST, only C°-type
continuity is required on displacements u(s, t) and v(s, ¢), the Lagrangian polynomial interpolation could be
used in this direction. Therefore, u(s,¢) and v(s, ) can be approximated as

ip

u(s,t) =Y _Pi(t,s)uls, 1;(s)), (16)
P

U(Svt) = ZP[(Z‘,S)U(SJ[(S)), (17)
=1

where P,(t,s) (i=1,2,...,i,) are Lagrangian polynomial functions, for instance when i, =4, they are
Pi(n) = (=1 +n+97 = 9°)/16,
Py(n) = (9 =27 = 9n* + 27n°) /16,
(18)
Py(n) = (9 + 270 — 9n* — 27n%) /16,
Py(n) = (=1 =5+ 90" +91°) /16,

where n = 2t/1,(s), and I,(s) is the circumferential arc length of the element at the position s on the me-
ridian.

However, as the Kirchhoff normalcy condition invoked in TST, the requirement of the C!-type conti-
nuity of w(s,?) is necessary. That means the first derivatives of w(s, ) in the circumferential direction (i.e.
Ow(s, 7)/0t) should be used as freedoms at the outside meridians of the element. To satisfy this condition,
Hermitian functions are used to interpolate w(s, ¢) in the circumferential direction, i.e.

w(s, 1) = ZEH(t,s)w(s,t,-(s)), (19)
where
Piu(n) = (2=3n+1n)/4,
Py(n) =b(1 —n—n>+1n")/8,
(20)
Py (n) =b(—=1 —n+n+1)/8,
Py(n) = (2+3n—1)/4,

where n = 2t/1,(s). It should be noted that P,4(1) and P,y(n) are both associated with reference meridian 1
and related to degrees of freedom corresponding to w(s,¢) and Ow(s,t)/0t, respectively, so do Psx(n) and
P;35(n) with reference meridian 4 (here, reference meridians 1 and 4 are the two outside reference meridians
of the shell element). In summary, by substituting Eq. (14) into Egs. (16), (17) and (19), the displacement
field of an element in TST can be constructed as

u(s,t) = iP,-(t, 5)B,, (s)u;, (21)
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o(5,1) = S P (t,5)B (¥ (22)

i=1

w(s, t) = ZP[H(I‘, $)B,,, (s)w;. (23)

As noted before, w, and ws in the above equation are not the displacements associated with reference
meridians 2 and 3. They are actually Ow, /0t and Ow,/0t, respectively.

4. Stiffness matrix of an element
4.1. Constitutive equations

Within the context of TST, the linear constitutive equations for an arbitrary laminate are

F = Le, (24)
where
F = [N,,N,, Ny, My, M;, M,,]", (25)

Aun A A Bu B B
Ay Ay By Bxn By
Aes Bei Bsx Bes

L= , 26
Dy Dy Dig (26)
Sym. Dy Dig
Degs
_ o w _
Os Ry
v w
ot R;
du Qv
0 Os
€= 7& Ou (27)

2GR RGP
The laminate stiffness coefficients in Eq. (26) are defined in the standard way (see e.g. Reddy (1984) and
Leissa and Chang (1996)) as
h/2
(Az:/'yBiiji/’) = Q,‘j(l,Z,Zz)dZ (l,]: 1,2,6) (28)
—h/2
O;; (i,j=1,2,6) are plane-stress reduced stiffness of the fibre-reinforced composite materials or the smart
materials in the lay-up (Fig. 1). Obviously, these coefficients are different in different lamination regions Qy ;
(I =1,2,...,n). The explicit expression of the strain vector e in the specified values of the displacement
field can be obtained as follows using Egs. (21)—(23),

4
e=) ®d, (29)
i=1
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where d; = [ul,vI, w! ] (as noted before, w, and w; are 0w, /0t and 0w, /0t, respectively, in a TST element)
and,

131' B;n,, 0 RL f)iH Bmw
O P,Bm, RLPI'HBmW
PB,, PB, 0
®=| g 0 PuB!. (30)
0 7 P/ B, —PyBu,
LG PB., LG HIPB, 2PB,

1341

in which * represents the derivative of a function or function vector with respect to its variable.

4.2. Stiffness matrix

The strain energy of an element is

U ——Z/ e'Ledrds. (31)
2 Qi

Its quadratic form in the specified values of the displacement field is what follows after substituting Eq. (29)
into Eq. (31),

/ ZdT(I)TL,d) d;drds = did (32)
Q=1 2
Jj=
where d = [le, d!,dl,d}]" and,
nL
k= [Z / d)l.TL,(I)jdtds]. (33)
i=1 YL

Matrix k is the stiffness matrix of an element.

5. Equivalent element nodal forces of thermal load and smart material actuation

For a thin laminated shell element, it is assumed that each one of its layers is in plane-stress state so that
the thermal expansion in through-thickness direction is neglected. In the local co-ordinates of each layer of
unidirectional composite material, in-plane thermal strains have the following concise expressions:

o1
oL oL

e | = |T, (34)
D 0

’LT

where o and or are thermal expansion coefficients in longitudinal and transverse directions of unidirec-
tional composite layer, respectively, and 7 is the temperature which may vary with the positions of layers.

Similar to obtaining the stress and moment resultants of elastic strains, the stress and moment resultants
of the in-plane thermal strains can be derived as
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[N n On On O Sg)

N,(T> =>» T,0,)| O On O 8—(1-T> (hy — hy), (35)
_N. Y(tT) =1 Q61 Q62 Q66 n /iTT) n
[ M 1 On Oun O 8(LT)

M| = EZTS(G”) O On Q| || (hh—h ), (36)
| mD n=1 Os1 Os Des |, V(LTT)

n

where 7, is the number of layers in a thermal region Qr ; bordered by two meridians and two circumferential
arcs, of which the temperatures of its four corners at top and bottom surfaces are characterized by TV,
TP (i = 1-4) (Fig. 3), T,(0,) is a stress transformation matrix from the local co-ordinates of the nth layer to
the natural co-ordinates of the element, Q;; (i, = 1,2, 6) are plane-stress reduced stiffness coefficients as
used before, £, is the distance from the middle surface to the lower surface of the nth layer.

The interpolation of temperature field for a thermal region Qr; is given by

TP (s, 1) + (TV(s, 1) — T°(s,1))(z/h + 0.5)",  TY(s,1) = TP(s,1),

TY(s,t) + (TP (s,t) — TY(s,))(0.5 — z/h)ﬁ7 TP(s,t) = TY(s,t), (37)

T(s,t,z) = {

where f is a parameter characterizing the temperature distribution through shell thickness, /4, and linear
interpolations are used for calculating 7Y (s, ¢) and TP (s,¢), i.e.

V(1) = TV 4 (19 — 70) =2l L2 {<T3U R S I (R } (38)
S, =81 h—1h S2 — 81

TP(s,1) = TP + (1P — 7P) =2 L0 {<T3D —IP) 4 (1P TP — TP 4 7P) S } ' (39)
S2 — 85 h—14 Sy — 81

Finally, the potential energy of the thermal strains can be derived as

Fig. 3. Characteristics of a thermal region.
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nt 4
Up=-Y_ / > d/®FV drds = —d"1", (40)
=1 Y91 =1

where F(T) is the stress and moment resultants from the thermal strains, i.e.

FD — [NS(T)sz(T) N M pr™ M(T)]T. (41)

1 0st s t st

nt is the total number of thermal regions and f@ is the equivalent element nodal forces resulted from
thermal loads, whose explicit expression is

nr

£ = > [ ®Fdeds|. (42)
=1 Y91,

The exact procedure as illustrated above can also be applied to derive the equivalent element nodal forces

fiA) resulted from the induced actuation strains. For layered type of smart materials, only the in-plane

induced actuation strains are considered. They have a succinct relationship with the external electric field E3

as follows:

(A)

&) d3

eV | = | dn | Es, (43)
y(A) 0

T12

where d3; and ds; are mechanical/electrical coupling coefficients.
The stress and moment resultants, F®), of the induced actuation strains have the similar expressions as
Egs. (35), (36) and (41), in which the thermal strains are replaced by the induced actuation strains and the

summations there are now over the smart material layers in the actuation regions Qa ;(/ =1,2,...,n4).
Then, referring to Eq. (42), the explicit expression of f\* is
nA
N =1>" [ ®FNdeds|. (44)
=1 Y8y

6. Control schemes

The structural stiffness matrix and nodal force vector can be assembled by those of its elements in the
standard way using direct stiffness method. The final equilibrium equation of structures under thermal
loads and active control forces can be expressed as

KD = + fN(E), (45)

where K and D are structural stiffness matrix and displacement vector, respectively; f* and f*(E) are
structural nodal force vectors corresponding to thermal loads and induced strain actuation, of which the
latter has been expressed explicitly as a function of active control input vector E that consists of the voltage
of electric field for each of the actuators.

The deformation control discussed here aims at making the overall structural displacement D be as small
as possible with the use of control actuators by choosing proper control input vector E for them. From Eq.
(45), it is obvious that structural displacements would be zero if the above two types of structural nodal
forces could exactly balance with each other. Unfortunately, this only happens when there are infinite
sensors and actuators located at all points of a structure, which could not be realized in real practice. When
there are only finite sensors and actuators, the induced strain actuation cannot completely balance the



D. Tan | International Journal of Solids and Structures 38 (2001) 2893-2919 2903

thermal load. Therefore, non-zero overall structural displacements are inevitable. Finding a way to mini-
mize these displacements is the task of designing the control schemes. The following will introduce a control
scheme based on strain measurements. A strain sensor (in numerical simulations is a position where a strain
component is calculated) is placed at the centre of a co-located actuator which is bonded on or embedded in
a shell structure. In the kth control step for which control input of electric fields E® has already taken
place, the measured/calculated structural strains under thermal loads and current control actuation are ).
To reduce these strains, additional induced actuation strains need to be produced by supplying additional
electric fields AE® = 5% /ds1 (or E® /ds) to the actuators. Thus, the ideal total control needed in this step
is E® + AE®_ To consider the effect of finite number of sensors and actuators, a gain parameter needs to be
included in the control algorithm. Therefore, the following control schemes with respect to different uses of
the gain parameter are suggested:

1. Algorithm based on ideal total input:

Meridional control E*™) = ¢ (E® + AEW) = ¢, (EW + 20 /dy),

Circumferential control E**) = ct(E(k> + AE<k>) = ct(E(k> + Eﬁk)/dgz).
2. Algorithm based on ideal additional input:
Meridional control E*™V = E® 4 ¢ AEW = E® + ¢, 20 /dy,,

Circumferential control E**) = E® 4+ ¢ AE® = E® + c,EE") /ds2,

where ¢, and ¢, are control gain parameters, Z*) and Z* are structural strain responses whose components
can be calculated from structural displacements by the following equations:

z \ Ou w  w

& = (1 + R_S> P Z_6s2 —l—R—S , (46)
z\ov OPw w

81<1+Rt)atzat2+Rt. (47)

Their explicit expressions in terms of the specified values of the displacement field can be derived as follows
by substituting Egs. (21)-(23) into Eqgs. (46) and (47):

4
Es (S)

= (I) di7 48

[ N } ?:1 : (48)

5) (1 + 4 )BB/ 0 RLBHBmw - ZBHBZ,
o = ’

1 o v (49)
0 (1 +1 )P,—B,m L PyB,, —zP}B,,
For simplicity in deriving the control schemes as illustrated above, the assumption is made that the co-
ordinates of actuator material coincide with the natural co-ordinates of shell of revolution, otherwise a
strain transformation matrix will be involved.

It is expected that the algorithm based on ideal total input be used in a situation in which a significant
portion of structural surface is left uncontrolled and the algorithm based on ideal additional input be used
when most of structural surface is under control.
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7. Numerical simulations

To test the numerical procedure developed in this paper, a wide range of applications are discussed
below, which include the controlled deformation of a composite beam and plate, thermal deformation and
its control of a composite plate and a paraboloid shell.

7.1. Controlled deformation of a cantilever beam-plate

The beam-plate is made of aluminium with Young’s modulus £, = 68.94 GPa. Its dimensions are length
L = 450 mm, width d = 100 mm and thickness %, = 3.173 mm. On its upper and lower surfaces, two layers
of thickness 4, = 0.25 mm of piezoelectric materials with properties, Young’s modulus E, = 63 GPa and
electrical/mechanical coupling coefficient d3; = 2.54 x 10~ mmV~! are bonded by two thin adhesive layers
with Young’s modulus E;, = 3.068 GPa and thickness 4, = 0.1016 mm. The beam deforms under the ac-
tuation of the piezoelectrics when external electric fields are supplied to them. The exact solution of the tip
deflection of this beam exists when pure bending actuation is in force, which has the following expression:

B 1L2M
27 D’
where D is the bending stiffness as defined in Eq. (26) and M is the moment resultant of the induced ac-
tuation strain which can be calculated using an equation similar to Eq. (36). This beam-plate is analyzed
with the proposed procedure in which only one element with seven evenly spaced knots is involved. The

numerical result for the tip deflection is 2.05 mm, which is quite close to the analytical result 2.03 mm
obtained with Eq. (50).

w(L) (50)

7.2. Controlled deformation of a cantilevered laminated composite plate

The unidirectional composite material in this [0°/ £ 45°] laminated plate has the properties as Young’s
moduli £y, = 150 GPa, Er = 9 GPa and Poisson ratio vt = 0.3. The geometric definitions of this plate are
shown in Fig. 4. The material properties of the actuating layers are the same as that given in the first
example. A constant voltage (394 V/mm) with an opposite sign was applied to the piezoelectrics on each
side of the plate. This plate was first investigated by Crawly and de Luis (1987) experimentally. Later,

Knot positions

——{|=— 0.25mm

f | | I | 1M s1em %]J}Ept
N

Fig. 4. A cantilevered composite plate containing surface-bonded distributed piezoelectric actuators (description of the experimental
set-up by Crawly).
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Ha et al. (1992) generated a numerical simulation for it using an eight-node 32 degrees-of-freedom brick
element including incompatible modes. In their studies, the following three nondimensional deflections are
calculated using either test results or finite element predictions:

(a) longitudinal bending: W, = M,/C,
(b) transverse bending: W = (M, — (M, + M;)/2)/C,
(c) lateral twisting deformation: Wg = (M| — Ms)/C,

where C is the width of the plate, and M, M5 and M, are the lateral deflections measured along the two
edges and the centreline, respectively, as shown in Fig. 4.

In the analysis using the proposed procedure, 24 elements are used. Each of them runs the full length of
the plate. The middle plate-strip with narrower actuators on its top and bottom surfaces uses four equal-
width elements, each of the two side plate-strips with wider actuators uses eight equal-width elements, and
each of the four plate strips without actuators on them uses one element. The knot positions in all elements
are shown in Fig. 4. The calculated three deflections defined above are depicted in Fig. 5. They are quite
close to what were given by Ha et al. (1992).

7.3. Shape control of a simply supported laminated composite plate

This example was developed by Ha et al. (1992) based on the original set-up of the composite plate used in
the experiment of Crawly and de Luis (1987) as illustrated in Fig. 4. The lay-up of the composite plate and the
properties of its unidirectional composite material as well as piezoelectrics are the same as those used in the
above example. The thermal expansion coefficients are o = 1.1 pum/m°C, ot =25.2 um/m°C for the unidi-
rectional composite material and o = op = 0.9 um/m°C for the piezoelectrics. The geometric definitions of the
plate are illustrated in Fig. 6. This plate is simply supported at its two shorter edges whilst its two longer edges
are free. The temperatures at the top and bottom surfaces of the plate are S0°F and —50°F, respectively.

In the numerical simulations of Ha et al. (1992), the input to each actuator is applied in the same way as
in the above example, i.e. a constant voltage with an opposite sign was applied to the piezoelectrics on each
side of the plate. It was found that by supplying 61 V to all of the piezoceramics, the entire deformation
shape of the structure was nearly flat. To test the proposed procedure in this case, 19 equal-width elements
running the full length of the plate are used, and 13 equal-spaced knots are placed in each element. The
calculated centreline deflections of an uncontrolled plate and a controlled plate with actuator voltages of 31
and 61 V, respectively, are depicted in Fig. 7. Indeed, when 61 V was supplied to all piezoceramics, the
centreline deflections are very small. To give more information about the controlled deformations of the
plate, the free-edge deflections are also calculated and shown in Fig. 7. The exaggerated configurations of
this plate in each case are plotted in Fig. 8.

This shape control problem is also investigated using the proposed control schemes based on a control
algorithm involving strain measurement. As there is a significant portion of the plate surface that is not
controlled and the longitudinal bending is the major deformation, the algorithm based on ideal total input
using meridional bending strain calculation is employed. The control gain parameter is chosen to be 1.2.
This results in a very good convergent behaviour for the control process, which is shown in Fig. 9. To
compare with the above results obtained using the uniform control scheme, the centreline and free-edge
deflections are also calculated and they are depicted in Fig. 10. It can be seen from Figs. 7 and 10 that
although the maximum centreline deflections under the two control schemes are not very different, the free-
edge deflections under the proposed control scheme are much smaller than that under the uniform control
scheme. This means the overall controlled deformation shape achieved using the proposed control scheme
is flatter than what is shown in Fig. 8(c). The exaggerated configuration of this plate under the proposed
control scheme is plotted in Fig. 11.
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Fig. 5. (a) Longitudinal bending W, (b) transverse bending Wr, and (c) lateral twisting Wy of a cantilevered [0°/ + 45°] composite
plate.

7.4. Compensation for thermal deformation of a paraboloid composite shell using distributed structural
actuation

The geometric definitions of the shell are illustrated in Fig. 12. Its lay-up is [0°/ & 45°],. The properties of
its unidirectional composite material as well as piezoelectrics and their thicknesses remain the same as that
used for the composite plate in Fig. 6. Because of the coupling between membrane extension and bending
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Fig. 7. Calculated deflections of an actuator composite plate exposed to elevated environment.

deflection in the deformation behaviour of a shell, it is expected that its deformations are difficult to be
controlled if a significant portion of its surface is left free. Therefore, densely packed distributed structural
actuators are used and the gaps between them are neglected. As illustrated in Fig. 12, nine rings of actuators
with meridional length 5 cm are used for the paraboloid shell of which only a small core area of its surface is
left uncontrolled. Each of the rings has 64 same-sized actuators. This paraboloid shell models an antenna
with focus 81.06 cm which is supported by three fixed points, i.e. A, B and C in Fig. 12. Its thermal de-
formation control in the following three thermal load cases is investigated:

(a) The temperature of the lefthalf outside surface of the antenna is 50°C whilst those of its inside and
righthalf outside surfaces are —20°C. This temperature distribution models the antenna facing a thermal
source from the left.

(b) The temperatures of the inside and outside surfaces of the antenna are —20°C and 50°C, respectively,
which models the antenna facing a thermal source at the back.

(c) The temperatures of the inside and outside surfaces of the antenna are 50°C and —20°C, respectively,
which models the antenna facing a thermal source in the front.

In the analysis using the present approach, 64 elements running the full meridional length of the shell are
used, and 13 equal-spaced knots are placed in each element. As the actuators are densely packed, the
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(a)

Fig. 8. Exaggerated configurations of an actuator composite plate exposed to elevated environment ((a) uncontrolled, (b) controlled
with 31 V and (c) controlled with 61 V).
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Fig. 12. An actuator composite paraboloid shell.

control scheme is then chosen as the one based on ideal additional input, for which both meridional and
circumferential control with control gain parameter 2.0 are employed. Various generated results are shown
in the following figures. First, the normal deflections of the outside circumferential edge are depicted in Fig.
13. Because of the large circumferentially distorted deformation (Fig. 19(a)), it was found that meridional
control cannot lead to a satisfied controlled deformation for the shell in the first thermal load case. The
corresponding results are therefore omitted. However, in this situation, the circumferential control exhibits
good control effect which can suppress the thermal deformations considerably. In the second and third
thermal load cases, meridional control shows better control effect than the circumferential one. This is
mainly because there is only single curvature bending along shell meridians in these two load cases.

Second, the normal deflections along the meridians are plotted in Figs. 14-16. These figures show clearly
that the normal deflection at a location where densely packed distributed structural actuation is present (i.e.
in the ring-shape area with total meridional length of 0.45 cm) can be effectively controlled although there is
influence of the boundary conditions or deformations of the uncontrolled shell surface near the borders of
this area. In contrast, the normal deflection of the free shell surface (i.e. the inner core area) can hardly be
controlled. They remain almost the same both before and after the control action.

The convergence of the control processes is shown in Fig. 17 in which the decrease of the absolute
maximum displacements is drawn against the increase of the control steps. It is noted that the convergent
values of the absolute maximum displacements are those happening in the small core area where active
control is absent.

The exaggerated final configurations of an uncontrolled and a controlled actuator composite paraboloid
shell in different load cases and under different control schemes are depicted in Figs. 18-20. For com-
parison, the original ideal configuration of this paraboloid shell is also plotted in Fig. 21.

8. Conclusions

A control algorithm based on co-located strain measurement is developed for structural shape control
using distributed structural actuation. Its success lies in the fact that an undeformed structure must have a
zero strain state and vice versa. Therefore, if the strains at many locations on a structure could be con-
trolled to approach zero, the structural shape would then be quite close to its undeformed one. Obviously,
the effectiveness of control increases with the number of sensors and actuators used all over a structure.
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Fig. 16. Normal deflections on the meridians in the third thermal load case (circumferential angle: (a) 0°, (b) 45°, (c) 90° and (d) 135°).
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D. Tan | International Journal of Solids and Structures 38 (2001) 28932919 2917

(b)

Fig. 18. Exaggerated configurations of an actuator composite paraboloid shell in the first load case ((a) uncontrolled and (b) cir-
cumferential control).

(a)

Fig. 19. Exaggerated configurations of an actuator composite paraboloid shell in the second load case ((a) uncontrolled, (b) meridional
control and (c) circumferential control).
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(a)

(b) (©

Fig. 20. Exaggerated configurations of an actuator composite paraboloid shell in the third load case ((a) uncontrolled, (b) meridional
control and (c) circumferential control).

This is especially true for shape control of a structure against its thermal deformation, because the latter
happens all over the structure. This point has been clearly demonstrated in the numerical simulations for
thermal deformation control of a paraboloid shell where the thermal deformations on the uncontrolled
parts of the shell changed little, whereas those on the controlled parts decreased substantially. For a
sensitive structure like a shell of revolution, densely packed actuators are necessary for achieving a better
control effect on its thermal deformations. Generally, the convergent behaviour of the control processes
illustrated in the applications are satisfactory. A further development of the control algorithm would be a
local domain one in which the action of an actuator depends on the sensing measurements of the sensors
located in a local domain around it.
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Fig. 21. Original configuration of an actuator composite paraboloid shell.
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